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Question: How does molecular energy transfer
and methane conversion evolve in space and
time in plasma methane reforming?

*Want to utilize plasma to electrify CH,
conversion technologies

*Need to understand energy transfer to and
from molecules

* How does rotation-vibrational non-equilibrium

evolve in time and space? How does this
influence CH, conversion?

lons, radicals,
*Need in situ measurements of rotation- excited species

vibration non-equilibrium and molecular number
density = hybrid fs/ps CARS
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What is hybrid fs/ps CARS? ps I°r<>'0=|lm signal
!

' fs laser ®Wprobe anti—Stokes
*Use broadband femtosecond pulse for simultaneous ===~
acquisition of many Raman transitions and picosecond
probe for spectral resolution @pump Wstokes

*Several advantages:

* Iopps ™ l?s * I, = ultrafast pulses provide high signal and

straightforward spatially-resolved one-dimensional |
(1-D) imaging

* No need to scan Stokes frequency and only needs 2 beams
* Delayed probe pulse avoids non-resonant background
* Can make near surface measurements (within 50 to 100 um)

*Would like to make spatially-resolved 1-D measurements i / \ t (ps)
in pulsed plasma 2

Rotational or
vibrational
energy level
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First level vibrational temperature can be measured

from the pure rotational CARS spectrum

Simulated rotational N, CARS
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Increasing vibrational energy level red-shifts the rotational energy level F(v,))

F(v,]) = Bv(j(/ + 1)) - DUUZU + 1)2)

%)+ye(v+%)2,Dv=De+Be(v+%)

More details available in
Chen T.Y. et al. Opt. Lett. (2020)

B, = B, — a(u+
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Rotational CARS can easily be extended to 1-D with only
two beams for time and spatially resolved measurements

20 us after voltage pulse, 40% CH,/60% N, 60 Torr
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* No need for frequency-converting optics (i.e. OPA) for separate Stokes beam [1]
* Bandwidth of 100 fs Ti:Sapphire regenerative amplifier enough to resolve
rotations (<200 cm1)

[1] Dedic, C.E. et al., Optica, (2017)
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Discharge geometry and experimental setup

Iris

40% CH,, 60% N, 60 Torr f e R

4 kV, 500 ns pulse width, 20 Generates stable thin st can i/ I_

Hz, 8 mm gap, 220 () resistor filament {d ~ 1mm) 'TH{ swp_perscope % R T

fs laser: <7 fs, 0.6 mJ f:m;i === CLC“V”iZ‘I """""""""""
(bandwidth up to CH, v; Q- - I—u

branch at 2916 cm™) e prone oy

ps laser: 65 ps, 7 m) o ST
Want to measure rotational N, > - cunen

CARS and vibrational CH, CARS so00r

All data is time-resolved and < 000 ‘2
1-D with 40 um resolution - 5
starting within 150 um of 000 | )
cathode N
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Significant spatial gradients in vibrational temperature
of N, were detected as a function of time
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V-T relaxation and peaks in T,,, are immediately
obvious from time evolutions of T, and T,

Vibration to

rotation/translation relaxation
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T, is strongly peaked ~ 1
mm from the cathode
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There is some spatial structure to the CH,
profile but smoother than N, T, and T,

1
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There is some spatial structure to the CH,
profile but smoother than N, T, and T,

1 * Around 1 mm there is a local dip
in CH, number density where
peak in T, was observed

0.7

How does this correlate with
temperature? (Tx ~1/N for
constant pressure ideal gas)
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Time evolution shows significant number density drop
unrelated to temperature (high CH, conversion)

Pulse end
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Vibrational temperature (K)

18

H, number density appears to be
sensitive to high N, T .
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Some remaining questions

*Why is there this highly peaked
structure in T ;.7

* Possible indication of transition or
formation of a pulsed spark and local
non-uniformities in electron density

*Why is the peaked structure not
more pronounced in the CH,
number density figure?
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Conclusions and future work

*Measured T, /T,,. and CH, number density in a 40%/60% CH,/N, pin-to-
pin pulsed discharge with time and spatially-resolved broadband fs/ps
CARS

*Spatial structure of T,,, has a large peak and is non-uniform

*Majority of CH, consumption likely due to electron-impact and
electronically excited N, quenching

*Peak in T, found to correlate with a dip in CH, number density

*2-D modeling of the discharge formation is underway to try to understand
the spatial structure in T, and CH, number density
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